Proton-conducting materials could enable new green energy technologies

David L. Chandler | MIT News • July 23, 2024

As the name suggests, most electronic devices today work through the movement of electrons. But materials that can efficiently conduct protons — the nucleus of the hydrogen atom — could be key to a number of important technologies for combating global climate change.

Most proton-conducting inorganic materials available now require undesirably high temperatures to achieve sufficiently high conductivity. However, lower-temperature alternatives could enable a variety of technologies, such as more efficient and durable fuel cells to produce clean electricity from hydrogen, electrolyzers to make clean fuels such as hydrogen for transportation, solid-state proton batteries, and even new kinds of computing devices based on iono-electronic effects.

In order to advance the development of proton conductors, MIT engineers have identified certain traits of materials that give rise to fast proton conduction. Using those traits quantitatively, the team identified a half-dozen new candidates that show promise as fast proton conductors. Simulations suggest these candidates will perform far better than existing materials, although they still need to be conformed experimentally. In addition to uncovering potential new materials, the research also provides a deeper understanding at the atomic level of how such materials work.

The new findings are described in the journal Energy and Environmental Sciences , in a paper by MIT professors Bilge Yildiz and Ju Li, postdocs Pjotrs Zguns and Konstantin Klyukin, and their collaborator Sossina Haile and her students from Northwestern University. Yildiz is the Breene M. Kerr Professor in the departments of Nuclear Science and Engineering, and Materials Science and Engineering.

“Proton conductors are needed in clean energy conversion applications such as fuel cells, where we use hydrogen to produce carbon dioxide-free electricity,” Yildiz explains. “We want to do this process efficiently, and therefore we need materials that can transport protons very fast through such devices.”

Present methods of producing hydrogen, for example steam methane reforming, emit a great deal of carbon dioxide. “One way to eliminate that is to electrochemically produce hydrogen from water vapor, and that needs very good proton conductors,” Yildiz says. Production of other important industrial chemicals and potential fuels, such as ammonia, can also be carried out through efficient electrochemical systems that require good proton conductors.

But most inorganic materials that conduct protons can only operate at temperatures of 200 to 600 degrees Celsius (roughly 450 to 1,100 Fahrenheit), or even higher. Such temperatures require energy to maintain and can cause degradation of materials. “Going to higher temperatures is not desirable because that makes the whole system more challenging, and the material durability becomes an issue,” Yildiz says. “There is no good inorganic proton conductor at room temperature.” Today, the only known room-temperature proton conductor is a polymeric material that is not practical for applications in computing devices because it can’t easily be scaled down to the nanometer regime, she says.

To tackle the problem, the team first needed to develop a basic and quantitative understanding of exactly how proton conduction works, taking a class of inorganic proton conductors, called solid acids. “One has to first understand what governs proton conduction in these inorganic compounds,” she says. While looking at the materials’ atomic configurations, the researchers identified a pair of characteristics that directly relates to the materials’ proton-carrying potential.

As Yildiz explains, proton conduction first involves a proton “hopping from a donor oxygen atom to an acceptor oxygen. And then the environment has to reorganize and take the accepted proton away, so that it can hop to another neighboring acceptor, enabling long-range proton diffusion.” This process happens in many inorganic solids, she says. Figuring out how that last part works — how the atomic lattice gets reorganized to take the accepted proton away from the original donor atom — was a key part of this research, she says.

The researchers used computer simulations to study a class of materials called solid acids that become good proton conductors above 200   degrees Celsius. This class of materials has a substructure called the polyanion group sublattice, and these groups have to rotate and take the proton away from its original site so it can then transfer to other sites. The researchers were able to identify the phonons that contribute to the flexibility of this sublattice, which is essential for proton conduction. Then they used this information to comb through vast databases of theoretically and experimentally possible compounds, in search of better proton conducting materials.

As a result, they found solid acid compounds that are promising proton conductors and that have been developed and produced for a variety of different applications but never before studied as proton conductors; these compounds turned out to have just the right characteristics of lattice flexibility. The team then carried out computer simulations of how the specific materials they identified in their initial screening would perform under relevant temperatures, to confirm their suitability as proton conductors for fuel cells or other uses. Sure enough, they found six promising materials, with predicted proton conduction speeds faster than the best existing solid acid proton conductors.

“There are uncertainties in these simulations,” Yildiz cautions. “I don’t want to say exactly how much higher the conductivity will be, but these look very promising. Hopefully this motivates the experimental field to try to synthesize them in different forms and make use of these compounds as proton conductors.”

Translating these theoretical findings into practical devices could take some years, she says. The likely first applications would be for electrochemical cells to produce fuels and chemical feedstocks such as hydrogen and ammonia, she says.

The work was supported by the U.S. Department of Energy, the Wallenberg Foundation, and the U.S. National Science Foundation.

A collage of four pictures of a yellow robot dog.
By Alex Shipps | MIT CSAIL August 8, 2024
A new algorithm helps robots practice skills like sweeping and placing objects, potentially helping them improve at important tasks in houses, hospitals, and factories.
A man wearing glasses and a blue shirt is smiling for the camera.
By Sara Feijo | MIT Open Learning August 8, 2024
Leveraging more than 35 years of experience at MIT, Bertsimas will work with partners across the Institute to transform teaching and learning on and off campus.
Two men are standing next to each other in front of a table with a robot on it.
By Rachel Gordon | MIT CSAIL July 31, 2024
CSAIL researchers introduce a novel approach allowing robots to be trained in simulations of scanned home environments, paving the way for customized household automation accessible to anyone.
A bunch of green thermometer on a pink background.
By Adam Zewe | MIT News July 31, 2024
More efficient than other approaches, the “Thermometer” technique could help someone know when they should trust a large language model.
A bunch of dice are flying in the air in a dark room.
By Adam Zewe | MIT News July 24, 2024
Introducing structured randomization into decisions based on machine-learning model predictions can address inherent uncertainties while maintaining efficiency.
A computer generated image of a brain on a motherboard.
By Rachel Gordon | MIT CSAIL July 23, 2024
MAIA is a multimodal agent that can iteratively design experiments to better understand various components of AI systems.
A hand is touching a screen with its finger.
By Adam Zewe | MIT News July 23, 2024
A new study shows someone’s beliefs about an LLM play a significant role in the model’s performance and are important for how it is deployed.
A nurse is looking at a computer screen while a woman is getting a mammogram.
By Adam Zewe | MIT News July 22, 2024
The model could help clinicians assess breast cancer stage and ultimately help in reducing overtreatment.
A grid of colorful balls connected to each other on a white background.
By Poornima Apte | Department of Materials Science and Engineering July 18, 2024
An MIT team uses computer models to measure atomic patterns in metals, essential for designing custom materials for use in aerospace, biomedicine, electronics, and more.
A cartoon illustration of a drone flying over mountains.
By Alex Shipps | MIT CSAIL July 18, 2024
Neural network controllers provide complex robots with stability guarantees, paving the way for the safer deployment of autonomous vehicles and industrial machines.
More Posts