Method prevents an AI model from being overconfident about wrong answers

Adam Zewe | MIT News • July 31, 2024

People use large language models for a huge array of tasks, from translating an article to identifying financial fraud. However, despite the incredible capabilities and versatility of these models, they sometimes generate inaccurate responses.

On top of that problem, the models can be overconfident about wrong answers or underconfident about correct ones, making it tough for a user to know when a model can be trusted.

Researchers typically calibrate a machine-learning model to ensure its level of confidence lines up with its accuracy. A well-calibrated model should have less confidence about an incorrect prediction, and vice-versa. But because large language models (LLMs) can be applied to a seemingly endless collection of diverse tasks, traditional calibration methods are ineffective.

Now, researchers from MIT and the MIT-IBM Watson AI Lab have introduced a calibration method tailored to large language models. Their method, called Thermometer , involves building a smaller, auxiliary model that runs on top of a large language model to calibrate it.

Thermometer is more efficient than other approaches — requiring less power-hungry computation — while preserving the accuracy of the model and enabling it to produce better-calibrated responses on tasks it has not seen before.

By enabling efficient calibration of an LLM for a variety of tasks, Thermometer could help users pinpoint situations where a model is overconfident about false predictions, ultimately preventing them from deploying that model in a situation where it may fail.

“With Thermometer, we want to provide the user with a clear signal to tell them whether a model’s response is accurate or inaccurate, in a way that reflects the model’s uncertainty, so they know if that model is reliable,” says Maohao Shen, an electrical engineering and computer science (EECS) graduate student and lead author of a paper on Thermometer.

Shen is joined on the paper by Gregory Wornell, the Sumitomo Professor of Engineering who leads the Signals, Information, and Algorithms Laboratory in the Research Laboratory for Electronics, and is a member of the MIT-IBM Watson AI Lab; senior author Soumya Ghosh, a research staff member in the MIT-IBM Watson AI Lab; as well as others at MIT and the MIT-IBM Watson AI Lab. The research was recently presented at the International Conference on Machine Learning.

Universal calibration

Since traditional machine-learning models are typically designed to perform a single task, calibrating them usually involves one task-specific method. On the other hand, since LLMs have the flexibility to perform many tasks, using a traditional method to calibrate that model for one task might hurt its performance on another task.

Calibrating an LLM often involves sampling from the model multiple times to obtain different predictions and then aggregating these predictions to obtain better-calibrated confidence. However, because these models have billions of parameters, the computational costs of such approaches rapidly add up.

“In a sense, large language models are universal because they can handle various tasks. So, we need a universal calibration method that can also handle many different tasks,” says Shen.

With Thermometer, the researchers developed a versatile technique that leverages a classical calibration method called temperature scaling to efficiently calibrate an LLM for a new task.

In this context, a “temperature” is a scaling parameter used to adjust a model’s confidence to be aligned with its prediction accuracy. Traditionally, one determines the right temperature using a labeled validation dataset of task-specific examples.

Since LLMs are often applied to new tasks, labeled datasets can be nearly impossible to acquire. For instance, a user who wants to deploy an LLM to answer customer questions about a new product likely does not have a dataset containing such questions and answers.

Instead of using a labeled dataset, the researchers train an auxiliary model that runs on top of an LLM to automatically predict the temperature needed to calibrate it for this new task.

They use labeled datasets of a few representative tasks to train the Thermometer model, but then once it has been trained, it can generalize to new tasks in a similar category without the need for additional labeled data.

A Thermometer model trained on a collection of multiple-choice question datasets, perhaps including one with algebra questions and one with medical questions, could be used to calibrate an LLM that will answer questions about geometry or biology, for instance.

“The aspirational goal is for it to work on any task, but we are not quite there yet,” Ghosh says.   

The Thermometer model only needs to access a small part of the LLM’s inner workings to predict the right temperature that will calibrate its prediction for data points of a specific task. 

An efficient approach

Importantly, the technique does not require multiple training runs and only slightly slows the LLM. Plus, since temperature scaling does not alter a model’s predictions, Thermometer preserves its accuracy.

When they compared Thermometer to several baselines on multiple tasks, it consistently produced better-calibrated uncertainty measures while requiring much less computation.

“As long as we train a Thermometer model on a sufficiently large number of tasks, it should be able to generalize well across any new task, just like a large language model, it is also a universal model,” Shen adds.

The researchers also found that if they train a Thermometer model for a smaller LLM, it can be directly applied to calibrate a larger LLM within the same family.

In the future, they want to adapt Thermometer for more complex text-generation tasks and apply the technique to even larger LLMs. The researchers also hope to quantify the diversity and number of labeled datasets one would need to train a Thermometer model so it can generalize to a new task.

This research was funded, in part, by the MIT-IBM Watson AI Lab.

A collage of four pictures of a yellow robot dog.
By Alex Shipps | MIT CSAIL August 8, 2024
A new algorithm helps robots practice skills like sweeping and placing objects, potentially helping them improve at important tasks in houses, hospitals, and factories.
A man wearing glasses and a blue shirt is smiling for the camera.
By Sara Feijo | MIT Open Learning August 8, 2024
Leveraging more than 35 years of experience at MIT, Bertsimas will work with partners across the Institute to transform teaching and learning on and off campus.
Two men are standing next to each other in front of a table with a robot on it.
By Rachel Gordon | MIT CSAIL July 31, 2024
CSAIL researchers introduce a novel approach allowing robots to be trained in simulations of scanned home environments, paving the way for customized household automation accessible to anyone.
A bunch of dice are flying in the air in a dark room.
By Adam Zewe | MIT News July 24, 2024
Introducing structured randomization into decisions based on machine-learning model predictions can address inherent uncertainties while maintaining efficiency.
A computer generated image of a brain on a motherboard.
By Rachel Gordon | MIT CSAIL July 23, 2024
MAIA is a multimodal agent that can iteratively design experiments to better understand various components of AI systems.
A computer generated image of a molecule on a green background
By David L. Chandler | MIT News July 23, 2024
Analysis and materials identified by MIT engineers could lead to more energy-efficient fuel cells, electrolyzers, batteries, or computing devices.
A hand is touching a screen with its finger.
By Adam Zewe | MIT News July 23, 2024
A new study shows someone’s beliefs about an LLM play a significant role in the model’s performance and are important for how it is deployed.
A nurse is looking at a computer screen while a woman is getting a mammogram.
By Adam Zewe | MIT News July 22, 2024
The model could help clinicians assess breast cancer stage and ultimately help in reducing overtreatment.
A grid of colorful balls connected to each other on a white background.
By Poornima Apte | Department of Materials Science and Engineering July 18, 2024
An MIT team uses computer models to measure atomic patterns in metals, essential for designing custom materials for use in aerospace, biomedicine, electronics, and more.
A cartoon illustration of a drone flying over mountains.
By Alex Shipps | MIT CSAIL July 18, 2024
Neural network controllers provide complex robots with stability guarantees, paving the way for the safer deployment of autonomous vehicles and industrial machines.
More Posts